Q. 2 a. For an energy signal $x(t)$ with energy E_{x}, determine the energy of the following signals:
(i) $x(t-T)$
(ii) $x(a t)$
(iii) $x(a t-b)$
(iv) $\mathrm{ax}(\mathrm{t})$

Answer:

Ans. (i) By definition the energy contained in the signal $x(t-T)$ is given by

$$
E=\int_{-\infty}^{\infty}|x(t-T)|^{2} d t=\int_{-\infty}^{\infty}|x(\tau)|^{2} d \tau=E_{x}
$$

(ii) By definition the energy contained in the signal $x(a t)$ is given by

$$
E=\int_{-\infty}^{\infty}|x(a t)|^{2} d t=\frac{1}{a} \int_{-\infty}^{\infty}|x(\tau)|^{2} d \tau=\frac{E_{x}}{a}
$$

(iii) By definition the energy contained in the signal $x(a t-b)$ is given by

$$
E=\int_{-\infty}^{\infty}|x(a t-b)|^{2} d t=\frac{1}{a} \int_{-\infty}^{\infty}|x(\tau)|^{2} d \tau=\frac{E_{x}}{a}
$$

(iv) By definition the energy contained in the signal $a x(t)$ is given by

$$
E=\int_{-\infty}^{\infty}|a x(t)|^{2} d t=a^{2} \int_{-\infty}^{\infty}|x(t)|^{2} d t=a^{2} E_{x}
$$

b. If $\mathrm{x}(\mathrm{t}) * \mathrm{~h}(\mathrm{t})=\mathrm{y}(\mathrm{t})$, then show that $\mathrm{x}(\mathrm{at}) * \mathrm{~h}(\mathrm{at})=\frac{1}{|\mathrm{a}|} \mathrm{y}(\mathrm{at})$

Answer:

Ans. Case-I: $a>0$. By definition

$$
\begin{aligned}
x(t) * h(t) & =\int_{-\infty}^{\infty} x(\tau) h(t-\tau) d \tau=y(t) \\
x(a t) * h(a t) & =\int_{-\infty}^{\infty} x(a \tau) h(a(t-\tau)) d \tau=\int_{-\infty}^{\infty} x(a \tau) h(a t-a \tau) d \tau
\end{aligned}
$$

A change of variables is performed by letting $a \tau=\alpha$, which also yields $d \tau=\frac{1}{a} d \alpha, \alpha \rightarrow \infty$ as $\tau \rightarrow \infty$, and $\alpha \rightarrow-\infty$ as $\tau \rightarrow-\infty$. Therefore,

$$
x(a t) * h(a t)=\frac{1}{a} \int_{-\infty}^{\infty} x(\alpha) h(a t-\alpha) d \alpha=\frac{1}{a} y(a t)
$$

Case II: $a<0$. By definition

$$
\begin{aligned}
x(t) * h(t) & =\int_{-\infty}^{\infty} x(\tau) h(t-\tau) d \tau=y(t) \\
x(-a t) * h(-a t) & =\int_{-\infty}^{\infty} x(-a \tau) h(-a(t-\tau)) d \tau=\int_{-\infty}^{\infty} x(-a \tau) h(-a t+a \tau) d \tau
\end{aligned}
$$

A change of variables is performed by letting $-a \tau=\alpha$, which also yields $d \tau=-\frac{1}{a} d \alpha, \alpha \rightarrow \infty$ as $\tau \rightarrow-\infty$, and $\alpha \rightarrow-\infty$ as $\tau \rightarrow \infty$. Therefore,

$$
x(a t) * h(a t)=\frac{1}{a} \int_{-\infty}^{\infty} x(\alpha) h(-a t-\alpha) d \alpha=\frac{1}{a} y(-a t)
$$

From the above two cases it is evident that

$$
x(a t) * h(a t)=\frac{1}{|a|} y(a t)
$$

Q. 3 a. Let $\mathrm{X}[\mathrm{k}]$ represent the DTFS coefficients of the periodic sequence $x(n)$ with period N. Find the DTFS coefficients of $(-1)^{n} \mathrm{x}(\mathrm{n})$

Answer:

Ans. Consider the signal

$$
(-1)^{n} x(n)=e^{j \pi n} x(n)=e^{j \frac{j \pi}{N} \frac{N}{2} n} x(n)
$$

We know that if

$$
x(n) \longleftrightarrow X_{k}
$$

then using frequency-shifting property, we obtain

$$
e^{j \frac{2 \pi}{N} \frac{N}{2} n} x(n) \longleftrightarrow X_{k-\frac{N}{2}}
$$

b. Suppose we are given the following information about a periodic signal $x(n)$ with period $N=8$ and Fourier series coefficients $\mathrm{X}[\mathrm{k}]$:
(i) $\mathrm{X}[\mathrm{k}]=-\mathrm{X}[\mathrm{k}-4]$
(ii) $\mathrm{x}(2 \mathrm{n}+1)=(-1)^{\mathrm{n}}$

Sketch one period of $x(n)$

Answer:

Ans. Consider the signal

$$
(-1)^{n} x(n)=e^{j \pi n} x(n)=e^{j \frac{2 \pi}{N} \frac{N}{2} n} x(n)
$$

We know that if

$$
x(n) \longleftrightarrow X_{k}
$$

then using frequency-shifting property, we obtain

$$
e^{j \frac{2 \pi}{N} \frac{N}{2} n} x(n) \longleftrightarrow X_{k-\frac{N}{2}}
$$

In this case $N=8$, therefore

$$
(-1)^{n} x(n) \longleftrightarrow X_{k-4}
$$

Since, it is given that $X_{k}=-X_{k-4}$, we have

$$
\begin{aligned}
(-1)^{n} x(n) & \longleftrightarrow-X_{k} \\
(-1)^{n} x(n) & =-x(n) \\
x(n)\left[1+(-1)^{n}\right] & =0
\end{aligned}
$$

This implies that

$$
x(n)=0 \quad \text { for } \quad n=0, \pm 2, \pm 4, \pm 6, \cdots
$$

From the given information $x(2 n+1)=(-1)^{n}$, we get

$$
x(1)=1, \quad x(3)=-1, \quad x(5)=1, \quad x(7)=-1
$$

Therefore, over one period $0 \leq n \leq 7, x(n)$ is defined as

$$
x(n)= \begin{cases}0 & n=0,2,4,6 \\ 1 & n=1,5 \\ -1 & n=3,7\end{cases}
$$

Q. 4 a. Given that $x(t)$ has the Fourier transform $X(\omega)$, express the Fourier transforms of the signal listed below in terms of $X(\omega)$.
(i) $\quad \mathrm{x}_{1}(\mathrm{t})=\mathrm{x}(1-\mathrm{t})+\mathrm{x}(-1-\mathrm{t})$
(ii) $\mathrm{x}_{2}(\mathrm{t})=\mathrm{x}(3 \mathrm{t}-6)$

Answer:

Ans. Given that

$$
x(t) \longleftrightarrow X(\omega)
$$

(a) Using the time shifting property, we have

$$
\begin{aligned}
& x(t+1) \longleftrightarrow X(\omega) e^{j \omega} \\
& \text { and } \quad x(t-1) \longleftrightarrow X(\omega) e^{-j \omega}
\end{aligned}
$$

Now, using the time reversal property, we have

$$
\begin{aligned}
& x(-t+1) \longleftrightarrow X(-\omega) e^{-j \omega} \\
& \text { and } \quad x(-t-1) \longleftrightarrow X(-\omega) e^{j \omega}
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
& x_{1}(t) \longleftrightarrow X_{1}(\omega) \\
& x(1-t)+x(-1-t) \longleftrightarrow X(-\omega) e^{-j \omega}+X(-\omega) e^{j \omega} \\
& x(1-t)+x(-1-t) \longleftrightarrow 2 X(-\omega) \cos \omega \\
& \mathcal{F}\left[x_{1}(t)\right]=X_{1}(\omega)=2 X(-\omega) \cos \omega
\end{aligned}
$$

b. Find the Fourier transform $G(\omega)$ of the signal $g(t)=\frac{1}{\pi t}$

Answer:

Ans. Define $X(\omega)=\frac{1}{\pi \omega}$ by replacing t with ω in the expression of $g(t)$. We know that

$$
\begin{aligned}
& \operatorname{sgn}(t) \longleftrightarrow \frac{2}{j \omega} \\
& \frac{j}{2 \pi} \operatorname{sgn}(t) \longleftrightarrow \frac{1}{\pi \omega} \\
& x(t) \longleftrightarrow X(\omega) \\
& x(t)=\frac{j}{2 \pi} \operatorname{sgn}(t) \quad \text { and } \quad X(\omega)=\frac{1}{\pi \omega} \\
& x(-\omega)=\frac{j}{2 \pi} \operatorname{sgn}(-\omega)=-\frac{j}{2 \pi} \operatorname{sgn}(\omega) \quad \text { and } \quad X(t)=\frac{1}{\pi t}
\end{aligned}
$$

The duality property of the fourier transform states that if

$$
x(t) \longleftrightarrow X(\omega)
$$

then,

$$
\begin{aligned}
X(t) & \longleftrightarrow 2 \pi x(-\omega) \\
\frac{1}{\pi t} & \longleftrightarrow-2 \pi \frac{j}{2 \pi} \operatorname{sgn}(\omega) \\
\frac{1}{\pi t} & \longleftrightarrow-j \operatorname{sgn}(\omega)
\end{aligned}
$$

Therefore,

$$
\mathcal{F}\left[\frac{1}{\pi t}\right]=-j \operatorname{sgn}(\omega)= \begin{cases}-j & \omega>0 \\ j & \omega<0\end{cases}
$$

Q. 5 a. Given that $x(n)$ has the Fourier transform $X\left(e^{j \omega}\right)$, express the Fourier transforms of the following signals in terms of $\mathrm{X}\left(\mathrm{e}^{\mathrm{j} \omega}\right)$.
(i) $\mathrm{x}_{1}(\mathrm{n})=(\mathrm{n}-1)^{2} \mathrm{x}(\mathrm{n})$
(ii) $\mathrm{x}_{2}(\mathrm{n})=\mathrm{e}^{\mathrm{jn} \pi / 2} \mathrm{x}(\mathrm{n}+2)$

Answer:

Ans. (i) Consider the given signal $x_{1}(n)=(n-1)^{2} x(n)=n^{2} x(n)-2 n x(n)+x(n)$.
Using the differentiation in frequency domain property, we get

$$
n x(n) \longleftrightarrow j \frac{d X\left(e^{j \omega}\right)}{d \omega}
$$

Using the differentiation in frequency domain property again, we have

$$
\begin{aligned}
& n[n x(n)] \longleftrightarrow j \frac{d}{d \omega}\left(j \frac{d X\left(e^{j \omega}\right)}{d \omega}\right) \\
& n^{2} x(n) \longleftrightarrow-\frac{d^{2} X\left(e^{j \omega}\right)}{d \omega}
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
\mathcal{F}\left[x_{1}(n)\right] & =\mathcal{F}\left[(n-1)^{2} x(n)\right. \\
& =\mathcal{F}\left[n^{2} x(n)-2 n x(n)+x(n)\right] \\
X_{3}\left(e^{j \omega}\right) & =-\frac{d^{2} X\left(e^{j \omega}\right)}{d \omega}-2 j \frac{d X\left(e^{j \omega}\right)}{d \omega}+X\left(e^{j \omega}\right) \\
X_{3}\left(e^{j \omega}\right) & =-\frac{d^{2} X\left(e^{j \omega}\right)}{d \omega}-2 j \frac{d X\left(e^{j \omega}\right)}{d \omega}+X\left(e^{j \omega}\right)
\end{aligned}
$$

(ii) Using the time shifting property, we get

$$
x(n+2) \longleftrightarrow X\left(e^{j \omega}\right) e^{j 2 \omega}
$$

Using the frequency shifting property on this, we get

$$
\begin{aligned}
x_{2}(n)=e^{j \frac{\pi}{2} n} x(n+2) & \longleftrightarrow X\left(e^{j\left(\omega-\frac{\pi}{2}\right)}\right) e^{j 2\left(\omega-\frac{\pi}{2}\right)} \\
X_{2}\left(e^{j \omega}\right) & =X\left(e^{j\left(\omega-\frac{\pi}{2}\right)}\right) e^{j 2\left(\omega-\frac{\pi}{2}\right)}
\end{aligned}
$$

b. Let the sequence $x(n)$ be a real sequence and let $\mathrm{X}\left(\mathrm{e}^{\mathrm{j} \omega}\right)=\operatorname{DTFT}[\mathrm{x}(\mathrm{n})]$
(i) Prove that the magnitude spectrum is an even function, that is, $\left|X\left(\mathrm{e}^{\mathrm{j} \omega}\right)\right|=\left|X\left(\mathrm{e}^{-\mathrm{j} \omega}\right)\right|$
(ii) Prove that the phase spectrum is an odd function, that is, $\angle \mathrm{X}\left(\mathrm{e}^{\mathrm{j} \omega}\right)=-\angle \mathrm{X}\left(\mathrm{e}^{-\mathrm{j} \omega}\right)$

Answer:

Ans. Given that

$$
x(n) \longleftrightarrow X\left(e^{j \omega}\right)
$$

In general the Fourier transform $X\left(e^{j \omega}\right)$ is a complex function of the real variable ω and can be written in rectangular form as

$$
X\left(e^{j \omega}\right)=X_{R}\left(e^{j \omega}\right)+j X_{I}\left(e^{j \omega}\right)
$$

where $X_{R}\left(e^{j \omega}\right)$ and $X_{I}\left(e^{j \omega}\right)$ are, respectively, the real and imaginary parts of $X\left(e^{j \omega}\right)$.
(a) The magnitude spectrum $\left|X\left(e^{j \omega}\right)\right|$ is given by

$$
\begin{aligned}
\left|X\left(e^{j \omega}\right)\right| & =\sqrt{X_{R}^{2}\left(e^{j \omega}\right)+X_{I}^{2}\left(e^{j \omega}\right)} \\
\left|X\left(e^{-j \omega}\right)\right| & =\sqrt{X_{R}^{2}\left(e^{-j \omega}\right)+X_{I}^{2}\left(e^{-j \omega}\right)}
\end{aligned}
$$

Since $X_{R}\left(e^{j \omega}\right)=X_{R}\left(e^{-j \omega}\right)$, and $X_{I}\left(e^{j \omega}\right)=-X_{I}\left(e^{-j \omega}\right)$, we obtain

$$
\begin{aligned}
& \left|X\left(e^{-j \omega}\right)\right|=\sqrt{X_{R}^{2}\left(e^{j \omega}\right)+X_{I}^{2}\left(e^{j \omega}\right)} \\
& \left|X\left(e^{-j \omega}\right)\right|=\left|X\left(e^{j \omega}\right)\right|
\end{aligned}
$$

Since $X_{R}\left(e^{j \omega}\right)=X_{R}\left(e^{-j \omega}\right)$, and $X_{I}\left(e^{j \omega}\right)=-X_{I}\left(e^{-j \omega}\right)$, we obtain

$$
\begin{aligned}
& \left|X\left(e^{-j \omega}\right)\right|=\sqrt{X_{R}^{2}\left(e^{j \omega}\right)+X_{I}^{2}\left(e^{j \omega}\right)} \\
& \left|X\left(e^{-j \omega}\right)\right|=\left|X\left(e^{j \omega}\right)\right|
\end{aligned}
$$

The magnitude spectrum $\left|X\left(e^{j \omega}\right)\right|$ is an even function of ω.
(b) We know that the Fourier transform $X\left(e^{j \omega}\right)$ is a complex function of the real variable ω and can be written in rectangular form as

$$
\begin{aligned}
X\left(e^{j \omega}\right) & =X_{R}\left(e^{j \omega}\right)+j X_{I}\left(e^{j \omega}\right) \\
\theta(\omega)=\angle X\left(e^{j \omega}\right) & =\tan ^{-1}\left[\frac{X_{I}\left(e^{j \omega}\right)}{X_{R}\left(e^{j \omega}\right)}\right] \\
\angle X\left(e^{-j \omega}\right) & =\tan ^{-1}\left[\frac{X_{I}\left(e^{-j \omega}\right)}{X_{R}\left(e^{-j \omega}\right)}\right]
\end{aligned}
$$

Since $X_{R}\left(e^{j \omega}\right)=X_{R}\left(e^{-j \omega}\right)$, and $X_{I}\left(e^{j \omega}\right)=-X_{I}\left(e^{-j \omega}\right)$, we obtain

$$
\begin{aligned}
& \angle X\left(e^{-j \omega}\right)=\tan ^{-1}\left[-\frac{X_{I}\left(e^{j \omega}\right)}{X_{R}\left(e^{j \omega}\right)}\right] \\
& \angle X\left(e^{-j \omega}\right)=-\tan ^{-1}\left[\frac{X_{I}\left(e^{j \omega}\right)}{X_{R}\left(e^{j \omega}\right)}\right] \\
& \angle X\left(e^{-j \omega}\right)=-\angle X\left(e^{j \omega}\right)
\end{aligned}
$$

The above equation implies that the phase spectrum $\angle X\left(e^{j \omega}\right)$ is an odd function of ω.
Q. 6 a. A waveform $x(t)=10+10 \sin (500 t)$ is to be sampled periodically and reproduced from these samples. Find the maximum allowable time interval between sample values. How many sample values are required to be stored in order to produce 2 seconds of this waveform?

Answer:

Ans. Given that

$$
x(t)=10+10 \sin (500 t)
$$

The maximum frequency present in the given signal $x(t)$ is

$$
f_{\max }=\frac{500}{2 \pi}=79.58 \mathrm{~Hz}
$$

Therefore the Nyquist rate (minimum sampling frequency) is given by

$$
f_{s}=2 f_{\max }=159.16 \mathrm{~Hz}
$$

Thus, the maximum allowable time interval between the sample values is given by

$$
T_{s}=\frac{1}{f_{s}}=\frac{1}{159.16}=6.28 \mathrm{~m} \mathrm{sec}
$$

The number of sample values required to be stored in order to produce 1 second of this waveform is given by

$$
\text { Number of samples }=\frac{2 \mathrm{sec} .}{6.28 \mathrm{~m} \mathrm{sec} .}=318.5
$$

b. A signal $\mathrm{x}(\mathrm{t})=\sin (\pi \mathrm{t}) /(\pi \mathrm{t})$ is sampled by $\mathrm{s}(\mathrm{t})=\sum_{\mathrm{n}=-\infty}^{\infty} \delta(\mathrm{t}-\mathrm{n} / 2)$. Determine and sketch the sampled signal and its Fourier transform.

Answer:

Ans. Let $x_{s}(t)$ be the sampled signal. Therefore,

$$
x_{s}(t)=x(t) s(t)=\frac{\sin (\pi t)}{\pi t} \sum_{n=-\infty}^{\infty} \delta\left(t-\frac{n}{2}\right) \sum_{n=-\infty}^{\infty} \frac{\sin \left(\pi \frac{n}{2}\right)}{\pi \frac{n}{2}} \delta\left(t-\frac{n}{2}\right)
$$

Q. 7 a. Show that for an LTI system, when the input is $x(t)=e^{S_{0} t} u(t)$, the output is of the form $\mathrm{y}(\mathrm{t})=\mathrm{H}\left(\mathrm{s}_{\mathrm{o}}\right) \mathrm{e}^{\mathrm{s}_{0} \mathrm{t}} \mathrm{u}(\mathrm{t})$. How is $\mathrm{H}\left(\mathrm{s}_{\mathrm{o}}\right)$ related to the impulse response of the system?
Answer:
Ans. We know that the input and output of an LTI system is related by

$$
\begin{aligned}
y(t)=h(t) * x(t) & =\int_{-\infty}^{\infty} h(\tau) x(t-\tau) d \tau \\
& =\int_{-\infty}^{\infty} h(\tau) e^{s_{0}(t-\tau)} d \tau \\
& =e^{s_{0} t} \int_{-\infty}^{\infty} h(\tau) e^{-s_{0} \tau} d \tau \\
y(t) & =H\left(s_{0}\right) e^{s_{0} t}
\end{aligned}
$$

where

$$
H\left(s_{0}\right)=\int_{-\infty}^{\infty} h(\tau) e^{-s_{0} \tau} d \tau=\left.\mathcal{L}[h(t)]\right|_{s=s_{0}}
$$

b. Determine the impulse response $h(t)$ of a system having a double-order pole at $s=-a$ and a zero at $s=-b$, where $a, b>0$ and $b-a=B$. It is also given that $h(0)=2$

Answer:

Ans. Since $h(t)$ of the system having a double-order pole at $s=-a$, and a zero at $s=-b$, we may assume that $H(s)$ is of the form

$$
\begin{aligned}
& X(s)=\frac{K(s+b)}{(s+a)^{2}} \\
& X(s)=\frac{K s}{(s+a)^{2}}+\frac{K b}{(s+a)^{2}} \\
& X(s)=K s G(s)+K b G(s)
\end{aligned}
$$

where

$$
G(s)=\frac{1}{(s+a)^{2}}
$$

Taking its inverse Laplace transform, we get

$$
g(t)=t e^{-a t} u(t)
$$

Also, because

$$
X(s)=K s G(s)+K b G(s)
$$

Q. 8 a. Apply the final-value theorem of z-transform to determine $x(\infty)$ for the signal $x(n)= \begin{cases}1, & \text { if } n \text { is even } \\ 0 & , \quad \text { otherwise }\end{cases}$

Answer:

Ans. Given that

$$
x(n)= \begin{cases}1 & \text { if } n \text { is even } \\ 0 & \text { otherwise }\end{cases}
$$

From the definition of the unilateral z-transform, we have

$$
X(z)=\sum_{n=0}^{\infty} x(n) z^{-n}=\sum_{\substack{n=0 \\ n \text { even }}}^{\infty}(1) z^{-n}
$$

Substituting $n=2 r$, where r is varying from 0 to ∞, we obtain

$$
X(z)=\sum_{r=0}^{\infty} z^{-2 r}=\sum_{r=0}^{\infty}\left(z^{-2}\right)^{r}=\frac{1}{1-z^{-2}}, \quad\left|z^{-2}\right|<1 \longrightarrow|z|>1
$$

From the final value theorem, we have

$$
\begin{aligned}
x(\infty) & =\lim _{z \rightarrow 1}\left(1-z^{-1}\right) X(z)=\lim _{z \rightarrow 1} \frac{1-z^{-1}}{1-z^{-2}} \\
& =\lim _{z \rightarrow 1} \frac{1-z^{-1}}{\left(1-z^{-1}\right)\left(1+z^{-1}\right)}=\lim _{z \rightarrow 1} \frac{1}{1+z^{-1}}=\frac{1}{2}
\end{aligned}
$$

b. An LTI system is characterized by the system function
$H(z)=\frac{3-4 z^{-1}}{1-3.5 z^{-1}+1.5 z^{-2}}$
Specify the ROC of $H(z)$ and determine the impulse response $h(n)$ for the following conditions:
(i) The system is causal and unstable
(ii) The system is noncausal and stable
(iii) The system is anticausal and unstable

Answer:

Ans. Given that

$$
\begin{aligned}
H(z) & =\frac{3-4 z^{-1}}{1-3.5 z^{-1}+1.5 z^{-2}} \\
& =\frac{3 z^{2}-4 z}{z^{2}-3.5 z+1.5} \\
\frac{H(z)}{z} & =\frac{3 z-4}{z^{2}-3.5 z+1.5} \\
& =\frac{3 z-4}{(z-0.5)(z-3)}
\end{aligned}
$$

Using partial-fraction expansion, we obtain

$$
\begin{aligned}
\frac{H(z)}{z} & =\frac{1}{z-0.5}+\frac{2}{z-3} \\
H(z) & =\frac{z}{z-0.5}+\frac{2 z}{z-3} \\
& =\frac{1}{1-0.5 z^{-1}}+\frac{2}{1-3 z^{-1}}
\end{aligned}
$$

This system has poles at $z=0.5$ and $z=3$.
(i) For this system to be causal and unstable, the ROC of $H(z)$ is the region in the z-plane outside the outermost pole and it must not include the unit circle. Therefore, the ROC is the region, $|z|>3$.
Since the ROC, $|z|>3$, is the region in the z-plane outside the outermost pole, all the poles correspond to causal (right-sided) signals. Now, consider

$$
H(z)=\frac{1}{1-0.5 z^{-1}}+\frac{2}{1-3 z^{-1}}, \quad|z|>3
$$

The inverse z-transform yields

$$
h(n)=(0.5)^{n} u(n)+2(3)^{n} u(n)
$$

(ii) For this system to be noncausal and stable, the ROC of $H(z)$ is a ring in the z-plane and it must include the unit circle. Therefore, the ROC is the region, $0.5<|z|<3$.
The pole of the first term is at 0.5 . The ROC has a radius greater than the pole at $z=0.5$, so this pole corresponds to causal (right-sided) signal. Therefore,

$$
(0.5)^{n} u(n) \longleftrightarrow \frac{1}{1-0.5 z^{-1}}
$$

The second term has a pole at $z=3$. The ROC has a radius less than the pole at $z=3$, so this pole corresponds to the anti-causal (left-sided) signal. Therefore,

$$
-2(3)^{n} u(-n-1) \longleftrightarrow \frac{2}{1-3 z^{-1}}
$$

and hence, we obtain

$$
h(n)=(0.5)^{n} u(n)-2(3)^{n} u(-n-1)
$$

(iii) For this system to be anti-causal and unstable, the ROC of $H(z)$ is the region in the z-plane inside the innermost pole and it must not include the unit circle. Therefore, the ROC is the region, $|z|<0.5$.
Since the ROC, $|z|<0.5$, is the region in the z-plane inside the innermost pole, all the poles correspond to anti-causal (right-sided) signals. Now, consider

$$
H(z)=\frac{1}{1-0.5 z^{-1}}+\frac{2}{1-3 z^{-1}}, \quad|z|<0.5
$$

